Abstract

Catastrophic forgetting in large language models is commonly described as an irreversible
loss of previously learned knowledge following post-training updates. However, empirical
behavior across modern systems suggests that this interpretation is incomplete;
performance regressions are often selective, domain-localized, and reversible. This paper
argues that “catastrophic forgetting” conflates multiple distinct failure modes, specifically
identifying inference misrouting and semantic boundary collapse as primary drivers of
degradation that impair knowledge access without destroying underlying representations.
We analyze how prevailing mitigation strategies—such as weight freezing and adapter-
based fine-tuning—reduce visible degradation without addressing these inference-level
failures, preserving surface-level metrics while failing to guarantee continued capability
accessibility. By distinguishing knowledge existence from knowledge accessibility, this
work reframes continual learning as a verification problem rather than a purely
representational one, outlining criteria for safe, verifiable model updates that support
longer-lived and more adaptable Al systems.

Reframing “Catastrophic Forgetting”

Catastrophic Forgetting is commonly described as a single failure mode: when a model is
fine-tuned on new data, previously learned knowledge is overwritten and irreversibly lost.
This framing has become the dominant explanation for performance regressions observed
during post-training updates of large language models (LLMs). However, empirical behavior
observed in modern systems suggests that this explanation is incomplete.

In practice, post-training updates often result in selective and uneven degradation rather
than uniform loss. Certain benchmarks may decline while others remain stable; core
competencies may pass sanity checks even as specialized evaluations regress. In some
cases, previously degraded capabilities can be partially or fully recovered without retraining
from scratch. These observations are difficult to reconcile with a model of catastrophic
forgetting that assumes direct and destructive overwriting of prior knowledge.

This work argues that “catastrophic forgetting” is better understood as an umbrella term
that conflates multiple distinct failure modes. Treating all post-update regressions as
evidence of irreversible knowledge loss obscures important differences in how and why
performance degrades. It prevents practitioners from distinguishing between failures that
destroy representations and those that merely impair their accessibility during inference.



Recent empirical studies support this distinction. Research into “spurious forgetting”
(Zheng et al., 2025) suggests that much observed degradation is merely alignment drift
rather than erasure. Similarly, work on disentangling memory from reasoning indicates that
failures often lie in retrieval pathways (Jin et al., 2025) rather than the underlying
representation. This paper unifies these observations into a single taxonomy of failure
modes.

Terminology and Definitions

To precisely diagnose the failure modes observed in post-training updates, this paper
introduces specific terminology to distinguish between representational loss and access
failure. We adopt the following operational definitions throughout this work:

Inference Misrouting A failure mode where a model retains the underlying representations
required to solve a task but fails to activate the correct inference pathway under standard
prompting. Unlike catastrophic forgetting (which implies the erasure of weights), inference
misrouting is a retrieval failure caused by shifts in task-specific alighment or probability
distributions. Knowledge exists but is effectively unreachable without altered prompting or
control mechanisms.

Semantic Boundary Collapse The erosion of distinguishability between conceptually
distinct domains (e.g., mathematical logic vs. scientific reasoning) following domain-dense
training. In this state, the model overgeneralizes the structural rules of the dominant
training domain to inappropriate contexts. This differs from model drift in that it is often
domain-localized; the model does not lose general capability but rather loses the ability to
correctly context-switch between reasoning strategies.

Catastrophic Forgetting (Refined) We restrict the use of this term to cases of irreversible
representational destruction, where the parameters encoding a capability are overwritten
such that performance cannot be recovered without re-training on the original data.

Distinct Failure Modes in Post-Training Updates

Based on observed behavior across multi-stage updates, post-training regression can be
more accurately categorized into at least four classes:

Destructive Weight Interference

This is the failure mode most associated with catastrophic forgetting. New training signals
directly overwrite parameters that previously encoded useful representations, resulting in



irreversible loss. This failure is well documented and remains a genuine risk in naive fine-
tuning pipelines.

Representation Drift

In this case, knowledge is not erased but becomes misaligned. Feature representations
shift such that downstream tasks can no longer reliably activate them. Performance
degrades even though the underlying information remains encoded within the model.

Inference Misrouting

Post-training updates can alter how the model selects latent pathways during inference.
The model may favor newly reinforced patterns even when they are inappropriate, leading
to incorrect task handling. This aligns with recent findings on “spurious forgetting,” where
task-specific alignment masks retained capabilities (Zheng et al., 2025). This effect is
especially visible after domain-dense updates—such as fine-tuning on mathematics,
Python code, or legal texts—where structural patterns often overlap across multiple
domains.

Semantic Boundary Collapse

Models do not possess explicit domain boundaries; they learn about statistical
associations. When training strongly reinforces certain structures (e.g. formulas), the
model may overgeneralize these associations, collapsing distinctions between related
domains. This can cause localized degradation—such as portions of science reasoning
degrading after math training—without global loss of knowledge.

Implications

The presence of these distinct failure modes has practical consequences. If performance
regressions are assumed to be caused exclusively by destructive overwriting, the only safe
response appears to be full retraining or aggressive parameter isolation. However, if a
significant fraction of regressions arises from inference-level effects or representation drift,
then irreversible loss is not the only —or even the primary—risk.

This distinction is critical. A system that silently overwrites knowledge cannot be repaired
without retraining. A system that misroutes inference or blurs semantic boundaries, by
contrast may retain the relevant information and be amendable to recovery or correction.
Conflating these behaviors under a single label obscures opportunities for safer, more
efficient update strategies.

Reframing catastrophic forgetting as a collection of distinct and observable failure modes
allows post-training updates to be evaluated more precisely. It shifts the focus from



assuming loss to diagnosing the nature of degradation, which is a prerequisite for any
controlled or governed update process.

1.Benchmark Degradation is an insufficient Proxy
for Knowledge Loss

Performance degradation on standardized benchmarks is often treated as direct evidence
of catastrophic forgetting. This assumption is widespread, intuitive, and—in the context of
continual learning—frequently incorrect. In practice, benchmarks of score changes
conflate multiple distinct failure modes that must be disentangled before claims of
knowledge loss can be justified.

Benchmarks such as ARK, Winogrande, GSM8K, and HellaSwag do not measure the
existence of knowledge. They measure task performance under a fixed evaluation protocol,
prompt structure, and inference path. As a result, a reduction in benchmark accuracy can
arise from at least three non-equivalent causes:

1. Irreversible knowledge destruction (true catastrophic forgetting)

2. Inference accessibility degradation (knowledge exists but is less readily retrieved)

3. Task interference or representational reweighting (Knowledge remains intact but is
deprioritized)

Only the first case constitutes catastrophic forgetting in a strict sense.

1.1 Knowledge Existence vs. Knowledge Accessibility

Modern Language models store information in distributed representations rather than
explicit, isolated memory slots. Consequently, the presence of knowledge cannot be
inferred solely from its immediate accessibility during inference. A model may fail to
retrieve correct information under a specific benchmark prompt while still retaining the
underlying representations necessary to produce correct outputs under alternative
conditions.

This distinction mirrors a familiar analogy: failure to recall a fact on demand does not imply
that the fact has been erased, only that the retrieval pathway is impaired or deprioritized.

Benchmark evaluations implicitly assume:

e Asingle, stable inference pathway
e Uniform task interpretation
e Consistent semantic boundaries across training stages



In continual learning scenarios, these assumptions no longer hold.

1.2 Benchmark Sensitivity to Routing and Task Interpretation

Benchmarks are especially sensitive to changes in how a model interprets a task rather
than what it “knows.” When new domains are introduced—particularly mathematically
dense domains—the model may adjust its internal routing and feature prioritization. This
can alter how problems are classified internally before any reasoning occurs. This effect
persists even under fixed prompts and evaluation settings, indicating a change in internal
task routing rather than surface-level prompt sensitivity.

For example:

e After math-focused training, formula-heavy inputs may be preferentially routed
through mathematical reasoning pathways.

e Tasks that previously relied on mixed reasoning (e.g. scientific or logical inference)
may be partially misclassified as purely mathematical.

e This misclassification can result in reduced benchmark accuracy (e.g. GSM8K strict
vs. GSM8K-CoT) by preferentially activating an inference strategy. This is
mismatched by the evaluation protocol.

From a benchmark perspective, this appears indistinguishable from forgetting. From a
representational perspective, it is not.

1.3 Variance, Noise, and Misinterpretation of Small Deltas
Benchmark scores exhibit non-trivial variance due to:

e Sampling noise

e Prompt sensitivity

e Generation stochasticity
e Evaluation protocol constraints

Small-to-moderate deltas (e.g. ~3-6%) are frequently within the range where multiple
explanations are plausible. Treating such deltas as definitive proof of catastrophic
forgetting is methodologically unsound without additional validation.

If:

e Performance degradation is domain-localized
e Other capabilities remain stable or improve
e Lost performance can be partially or fully recovered without reintroducing data

Then the evidence favors inference accessibility shifts rather than knowledge destruction.



1.4 Implications for Continual Learning Evaluation

Equating benchmark degradation with forgetting leads to two systematic errors:

1. False positives: Systems are labeled as destructive when they are not.
2. Overcorrection: Excessive constraints are introduced to prevent perceived
forgetting, often at the expense of adaptability.

Arigorous evaluation of continual learning systems must therefore distinguish between:

e Irreversible loss (cannot be recovered without retraining)
e Reversible degradation (can be recovered through reorganization, prompting, or
controlled updates)

Only the former represents catastrophic forgetting.

2. Benchmark Degradation as an Inference Routing
Problem, Not Knowledge Loss

Performance Regressions observed after domain-specific training are commonly
interpreted as evidence of catastrophic forgetting. However, benchmark behavior alone is
insufficient to support this conclusion. In many cases, observed degradation reflects a
change in how a model interprets and routes a task internally, rather than a loss of the
underlying knowledge required to solve it.

Benchmarks are sensitive not to correctness, but to the alignment between a model’s
inference strategy and the benchmark evaluation protocol. When a model is trained to
prioritize a specific domain—such as mathematics—it may alter its internal task
classification of heuristics. This affects which reasoning pathways are activated before any
substantive inference occurs.

As a result, tasks that were previously engaged in mixed or contextual reasoning may be
preferentially routed through a narrower, domain-specialized pathway. The model remains
capable of producing correct answers, but the activated inference strategy may be
mismatched to the benchmark scoring criteria.

This effect is particularly visible in paired benchmarks that test the same underlying
capability under different evaluation assumptions.



Figure 1: Illustration of inference misrouting. Following
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Crucially, this degradation can occur without any destruction or overwriting of prior
representations. Knowledge remains present but is accessed differently. In such cases,
traditional benchmark drops conflate access inefficiency with knowledge loss.

This distinction has practical consequences. If degradation is caused by inference routing
shifts rather than representational damage, then remediation does not require retraining
from scratch. Instead, the problem becomes one of restoring or refining task classification
and routing behavior—an architectural and procedural challenge rather than a data or
scale problem.

Treating all post-training benchmark regressions as catastrophic forgetting obscures this
distinction and leads to unnecessarily expensive and risky mitigation strategies. A more
precise interpretation recognizes that not all performance loss reflects destroyed
intelligence; in many cases, it reflects misaligned inference.

3. Limitations of Existing Mitigation Strategies

In response to catastrophic forgetting, the prevailing mitigation strategies in current
practice focus on restricting or isolating weight updates. Common approaches include
freezing large portions of the base model, attaching adapters (e.g., LoRA), partial fine-
tuning, or maintaining multiple task-specific variants. While these methods can reduce
immediate performance degradation, they do not address the underlying cause of
inference misalignment described in the previous sections.

These strategies operate under the assumption that forgetting is primarily caused by
destructive weight updates. As a result, they emphasize preventing change rather than



managing how change is integrated. This framing treats model knowledge as fragile and
static, rather than as something that can be preserved while still allowing controlled
adaptation.

Semantic Boundary Collapse

Beyond surface-level performance degradation, continual updates can introduce a deeper
structural failure: the erosion of semantic boundaries between domains. Even when task-
specific knowledge remains encoded within the model, repeated updates can reduce the
separability of representations associated with distinct domains (e.g., mathematics,
science, logic).

This phenomenon—referred to here as semantic boundary collapse—does not
immediately manifest as outright forgetting. Instead, it degrades the model’s internal
organization, causing previously distinct conceptual regions to blur or overlap. As a result,
the model retains knowledge but loses the ability to reliably distinguish which knowledge
should be applied in each context.

Because this degradation occurs at the representational
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In practice, freezing weights or isolating updates often introduces a different failure mode:
fragmentation of inference behavior. The model may retain prior capabilities in isolation but
lacks a coherent mechanism for integrating new and existing knowledge during inference.
This can lead to inconsistent task classification, brittle generalization, and degraded
performance on tasks that require cross-domain reasoning.

Adapter-based approaches further complicate evaluation. While they can preserve
baseline benchmark scores under controlled conditions, they frequently mask routing
conflicts rather than resolving them. The base model and the adapter may encode
compatible knowledge yet compete or interfere at inference time due to unclear task



boundaries. This results in performance that appears stable on narrow benchmarks but
degrades unpredictably in mixed or real-world scenarios.

Moreover, these approaches tend to lock models into a static training paradigm. Each
update increases architectural and operational complexity, requiring careful orchestration
of which components are active, when, and under what conditions. Over time, this turns
model maintenance into an exercise in risk management rather than capability growth.

Critically, none of these strategies provide a principled way to verify that existing knowledge
remains accessible after new training is introduced. At best, they preserve surface-level
benchmark performance; at worst, they defer degradation until deployment, where failures
are harder to diagnose and more costly to correct.

As a result, current mitigation techniques reduce the visibility of catastrophic forgetting
without eliminating its root causes. They treat inference behavior as an emergent side
effect rather than as a first-class system of property that can be evaluated, constrained,
and corrected.

This gap motivates the need for approaches that explicitly separate knowledge of
preservation from inference control—allowing models to adapt while maintaining verified
access to prior capabilities.

4. Implications for Continual Learning and Model
Update Strategies

Recognizing that many post-training performance regressions arise from inference routing
shifts rather than knowledge destruction has significant implications for how continual
learning systems should be designed, evaluated, and deployed. It reframes the stability-
plasticity dilemma from a purely representational problem into a systems-level
coordination problem.

If knowledge can remain intact while access patterns change, then the primary risk in
updating large language models is not loss of intelligence, but loss of reliable access to
that intelligence. This distinction matters operationally. Knowledge of loss requires costly
remediation—typically full or partial retraining—whereas access degradation can, in
principle, be detected, constrained, and corrected without reintroducing or relearning the
underlying information.



This perspective also exposes a mismatch between current evaluation practices and real-
world model behavior. Benchmarks are typically treated as proxies for capability retention,
yet they conflate representational integrity with inference alighment. As a result, systems
may be prematurely classified as degraded when the issue lies in how tasks are interpreted
rather than in what the model knows.

For continual learning, this implies that successful update strategies must do more than
minimize weight drift or preserve benchmark scores. They must provide explicit guarantees
that previously validated capabilities remain reachable under evolving inference
conditions. Without such guarantees, models become increasingly brittle as they
accumulate domain-specific training, even if no single update appears harmful in isolation.

From a cost perspective, this distinction is critical. Treating every regression as
catastrophic forgetting forces organizations into expensive retraining cycles or conservative
update schedules that slow deployment. By contrast, systems that can distinguish
between representational damage and routing misalignment allow for targeted
intervention, reducing both computational cost and operational risk.

Finally, this framing suggests that architectural and procedural decisions made early in a
model’s lifecycle constrain its long-term updatability. Models trained without regard for
future task integration implicitly encode assumptions about how inference should be
routed. As new domains are introduced, these assumptions are stressed, leading to the
kinds of degradations observed in practice.

Taken together, these implications argue for a shift away from monolithic retraining and ad
hoc mitigation toward update strategies that treat inference behavior as a controllable,
verifiable component of the system. Continual learning, under this view, is not solely about
preserving weights, but about preserving access to meaning as models evolve.

5. Criteria for Safe and Verifiable Model Updates

The observations presented in prior sections suggest that performance degradation
following post-training updates cannot be reliably interpreted as irreversible knowledge
loss. Instead, degradation frequently reflects impaired accessibility of existing capabilities
due to inference misalignment or representational interference. As a result, mitigation
strategies that focus solely on preventing parameter change are insufficient to guarantee
safe model evolution.



To support continual updates without sacrificing existing capabilities, model update
mechanisms must satisfy a different set of criteria—ones that treat inference behavior and
knowledge accessibility as first-class system properties rather than emergent side effects.

First, capability accessibility must be verifiable independently of training history. A
model should be demonstrably able to access prior competencies after an update without
requiring reintroduction of task-specific data. Preservation claims based solely on the
absence of training signals or frozen parameters are inadequate if inference pathways
cannot be validated under consistent evaluation conditions.

Second, performance regressions must be diagnosable as access failures rather than
assumed erasure. Selective or domain-localized degradation—particularly when
reversible under controlled conditions—indicates that representations may persist even
when benchmark performance declines. Update frameworks must therefore distinguish
between representational destruction and inference-level misalignment to avoid
unnecessary retraining or architectural fragmentation.

Third, update safety must be evaluated under uniform inference assumptions.
Changes in prompt structure, evaluation of framing, or inference configuration can
materially alter benchmark outcomes without any modification to model parameters.
Consequently, claims of forgetting or recovery are only meaningful when assessed under
consistent evaluation regimes. This requirement applies equally to baseline
measurements and post-update validation.

Fourth, integration of new capabilities must preserve cross-domain coherence.
Strategies that isolate updates—such as task-specific adapters or frozen backbones—can
preserve narrow performance metrics while degrading the model’s ability to reason across
domains. Safe updates should maintain the model’s capacity to correctly classify and
route mixed-domain inputs, rather than optimize isolated benchmark stability. Since
reasoning capabilities can decouple from memory access (Jin et al., 2025), safe updates
must verify that the routing logic between domains remains intact, not that specific facts
can still be recalled.

Finally, model maintenance should prioritize reversibility and auditability over static
preservation. Systems that defer degradation or mask inference conflicts increase
operational risk by allowing failures to surface only in deployment. In contrast, update
approaches that enable verification of capability accessibility after each change reduce
both technical and economic risk, allowing models to evolve without sacrificing reliability.



Empirical observations from publicly available base models, summarized in Appendix A,
illustrate that benchmark degradation and recovery can occur under consistent evaluation
conditions without reintroduction of task-specific supervision. These results reinforce the
need for update criteria grounded in verification of access rather than assumptions of
representational loss.

6. Economic and Operational Implications of Update
Safety

The distinction between irreversible knowledge loss and reversible performance
degradation has material implications for how organizations evaluate the cost and risk of
deploying and maintaining large language models. When these failure modes are
conflated, update decisions are driven by worst-case assumptions rather than measured
system behavior.

In current practice, even modest performance regressions are often treated as evidence
that a model has been fundamentally compromised. This interpretation incentivizes full or
partial retraining as the default remediation strategy, regardless of whether underlying
knowledge has been lost. As models increase in size and specialization, this approach
becomes economically unsustainable.

Separating update safety from benchmark stability allows costs to be evaluated more
precisely. If degradation reflects access to misalignment rather than representational
damage, remediation does not require relearning prior knowledge. This reframing reduces
the frequency with which retraining is treated as unavoidable, lowering both direct
compute expenditure and indirect operational overhead.

Risk management is similarly affected. Conventional update pipelines offer limited
visibility into how prior capabilities are impacted until after deployment, particularly in
mixed or downstream tasks. This creates latent risk that only becomes apparent in
production environments. An update process that distinguishes between irreversible and
reversible failure modes enables earlier detection and containment of regressions,
reducing the likelihood of costly post-deployment failures.

These considerations are especially relevant in regulated or high-stakes domains, where
the inability to demonstrate continuity of prior behavior constrains update cadence.
Systems that can provide credible assurance that previously validated capabilities remain



accessible after updates support more frequent iteration without proportionally increasing
compliance or safety risk.

At a strategic level, this perspective alters how Al assets are valued. Models are no longer
treated as static artifacts whose utility decays with time, but as evolving systems whose
value can compound if updates do not erase prior investment. The primary constraint on
long-lived deployment shifts from model capacity or data availability to update safety and
verification.

Importantly, these implications do not depend on a specific implementation approach.
They arise from how to update outcomes that are interpreted and managed. Organizations
that continue to equate benchmark degradation with intelligence loss will overpay for
retraining and underutilizing existing systems. Those that distinguish between loss and
misalignment gain flexibility, cost control, and longer model lifecycles.

Conclusion: Reframing Update Safety in Continual
Learning

This paper argues that catastrophic forgetting in large language models is frequently
mischaracterized as a singular phenomenon of knowledge erasure. Empirical behavior
across benchmarks instead suggests that many observed regressions arise from changes
in inference routing and task interpretation, rather than irreversible loss of learned
representations.

By distinguishing between knowledge existence and knowledge accessibility, we show that
benchmark degradation alone is an insufficient proxy for intelligence loss. This distinction
has practical consequences: systems that conflate access degradation with
representational damage are often over constrained, leading to unnecessary retraining,
inflated costs, and reduced adaptability.

The analysis further demonstrates that existing mitigation strategies, while effective at
limiting parameter drift, do not address inference behavior as a first-class system property.
As a result, they may preserve surface-level performance while failing to guarantee
continued access to prior capabilities under evolving conditions.

Taken together, these observations motivate a shift in how continual learning systems are
evaluated and updated. Rather than treating model updates as inherently destructive,
update safety should be framed as a verifiable property—one that distinguishes irreversible
loss from reversible misalighment.



Importantly, this work intentionally focuses on problem framing and system-level
implications rather than implementation details. The mechanisms by which safe updates
are enforced are beyond the scope of this paper and are not inferable from the properties
discussed herein. Future work will focus on formalizing evaluation criteria and verification
strategies for long-lived, updatable Al systems.
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Appendix A— Empirical Benchmark Evidence

Appendix A provides empirical benchmark results demonstrating that the behaviors
discussed in Sections 2-5 are observable in practice across multiple base models. These
results are intended to validate that the described phenomena are not theoretical artifacts
or single-model anomalies, but reproducible effects under consistent evaluation
conditions.

Evaluation Consistency.

All benchmarks in this appendix were executed using the same evaluation harness, task
definitions, and zero-shot configuration. Differences in reported scores reflect changes in
model state rather than differences in benchmarking methodology.

ARC GSM8K CoT HellaSwag Winogrande

Model Phase
(B) (8) (D) (D)
Nous- Math-
0 ~ 0
Hermes-7B trained
Nous- Post-
~ N I~ ™
Hermes-7B recovery
Llama-2-7B- Math-
0 ~ 2
chat trained
Llama-2-7B- Post-
~ ™ ~ N
chat recovery

Table A1. Summary of benchmark performance changes across training phases for two
independently evaluated base models.

Interpretation Notes.

Changes in benchmark performance should be interpreted in the context of task sensitivity
to inference routing rather than as evidence of representational loss. Benchmarks such as
the ARC Challenge are particularly sensitive to shifts in task classification and internal
routing behavior, while logic-focused tasks such as Winogrande remain stable or improve
across all evaluated conditions.

No modelin this appendix exhibits uniform degradation across evaluated tasks. In all
cases, performance changes are domain-localized and reversible under subsequent



controlled adaptation, consistent with inference misalignment rather than irreversible
knowledge destruction as described in Sections 2-4.
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