
Abstract 

Catastrophic forgetting in large language models is commonly described as an irreversible 
loss of previously learned knowledge following post-training updates. However, empirical 
behavior across modern systems suggests that this interpretation is incomplete; 
performance regressions are often selective, domain-localized, and reversible. This paper 
argues that “catastrophic forgetting” conflates multiple distinct failure modes, specifically 
identifying inference misrouting and semantic boundary collapse as primary drivers of 
degradation that impair knowledge access without destroying underlying representations. 
We analyze how prevailing mitigation strategies—such as weight freezing and adapter-
based fine-tuning—reduce visible degradation without addressing these inference-level 
failures, preserving surface-level metrics while failing to guarantee continued capability 
accessibility. By distinguishing knowledge existence from knowledge accessibility, this 
work reframes continual learning as a verification problem rather than a purely 
representational one, outlining criteria for safe, verifiable model updates that support 
longer-lived and more adaptable AI systems. 

Reframing “Catastrophic Forgetting” 
Catastrophic Forgetting is commonly described as a single failure mode: when a model is 
fine-tuned on new data, previously learned knowledge is overwritten and irreversibly lost. 
This framing has become the dominant explanation for performance regressions observed 
during post-training updates of large language models (LLMs). However, empirical behavior 
observed in modern systems suggests that this explanation is incomplete.  

In practice, post-training updates often result in selective and uneven degradation rather 
than uniform loss. Certain benchmarks may decline while others remain stable; core 
competencies may pass sanity checks even as specialized evaluations regress. In some 
cases, previously degraded capabilities can be partially or fully recovered without retraining 
from scratch. These observations are difficult to reconcile with a model of catastrophic 
forgetting that assumes direct and destructive overwriting of prior knowledge. 

This work argues that “catastrophic forgetting” is better understood as an umbrella term 
that conflates multiple distinct failure modes. Treating all post-update regressions as 
evidence of irreversible knowledge loss obscures important differences in how and why 
performance degrades. It prevents practitioners from distinguishing between failures that 
destroy representations and those that merely impair their accessibility during inference. 



Recent empirical studies support this distinction. Research into “spurious forgetting” 
(Zheng et al., 2025) suggests that much observed degradation is merely alignment drift 
rather than erasure. Similarly, work on disentangling memory from reasoning indicates that 
failures often lie in retrieval pathways (Jin et al., 2025) rather than the underlying 
representation. This paper unifies these observations into a single taxonomy of failure 
modes. 

Terminology and Definitions 

To precisely diagnose the failure modes observed in post-training updates, this paper 
introduces specific terminology to distinguish between representational loss and access 
failure. We adopt the following operational definitions throughout this work:  

Inference Misrouting A failure mode where a model retains the underlying representations 
required to solve a task but fails to activate the correct inference pathway under standard 
prompting. Unlike catastrophic forgetting (which implies the erasure of weights), inference 
misrouting is a retrieval failure caused by shifts in task-specific alignment or probability 
distributions. Knowledge exists but is effectively unreachable without altered prompting or 
control mechanisms. 

Semantic Boundary Collapse The erosion of distinguishability between conceptually 
distinct domains (e.g., mathematical logic vs. scientific reasoning) following domain-dense 
training. In this state, the model overgeneralizes the structural rules of the dominant 
training domain to inappropriate contexts. This differs from model drift in that it is often 
domain-localized; the model does not lose general capability but rather loses the ability to 
correctly context-switch between reasoning strategies. 

Catastrophic Forgetting (Refined) We restrict the use of this term to cases of irreversible 
representational destruction, where the parameters encoding a capability are overwritten 
such that performance cannot be recovered without re-training on the original data. 

Distinct Failure Modes in Post-Training Updates 
Based on observed behavior across multi-stage updates, post-training regression can be 
more accurately categorized into at least four classes: 

Destructive Weight Interference 
This is the failure mode most associated with catastrophic forgetting. New training signals 
directly overwrite parameters that previously encoded useful representations, resulting in 



irreversible loss. This failure is well documented and remains a genuine risk in naïve fine-
tuning pipelines. 

Representation Drift 
In this case, knowledge is not erased but becomes misaligned. Feature representations 
shift such that downstream tasks can no longer reliably activate them. Performance 
degrades even though the underlying information remains encoded within the model.  

Inference Misrouting 
Post-training updates can alter how the model selects latent pathways during inference. 
The model may favor newly reinforced patterns even when they are inappropriate, leading 
to incorrect task handling. This aligns with recent findings on “spurious forgetting,” where 
task-specific alignment masks retained capabilities (Zheng et al., 2025). This effect is 
especially visible after domain-dense updates—such as fine-tuning on mathematics, 
Python code, or legal texts—where structural patterns often overlap across multiple 
domains. 

Semantic Boundary Collapse 
Models do not possess explicit domain boundaries; they learn about statistical 
associations. When training strongly reinforces certain structures (e.g. formulas), the 
model may overgeneralize these associations, collapsing distinctions between related 
domains. This can cause localized degradation—such as portions of science reasoning 
degrading after math training—without global loss of knowledge. 

Implications 
The presence of these distinct failure modes has practical consequences. If performance 
regressions are assumed to be caused exclusively by destructive overwriting, the only safe 
response appears to be full retraining or aggressive parameter isolation. However, if a 
significant fraction of regressions arises from inference-level effects or representation drift, 
then irreversible loss is not the only –or even the primary—risk. 

This distinction is critical. A system that silently overwrites knowledge cannot be repaired 
without retraining. A system that misroutes inference or blurs semantic boundaries, by 
contrast may retain the relevant information and be amendable to recovery or correction. 
Conflating these behaviors under a single label obscures opportunities for safer, more 
efficient update strategies. 

Reframing catastrophic forgetting as a collection of distinct and observable failure modes 
allows post-training updates to be evaluated more precisely. It shifts the focus from 



assuming loss to diagnosing the nature of degradation, which is a prerequisite for any 
controlled or governed update process. 

1. Benchmark Degradation is an insufficient Proxy 
for Knowledge Loss 

Performance degradation on standardized benchmarks is often treated as direct evidence 
of catastrophic forgetting. This assumption is widespread, intuitive, and—in the context of 
continual learning—frequently incorrect. In practice, benchmarks of score changes 
conflate multiple distinct failure modes that must be disentangled before claims of 
knowledge loss can be justified. 

Benchmarks such as ARK, Winogrande, GSM8K, and HellaSwag do not measure the 
existence of knowledge. They measure task performance under a fixed evaluation protocol, 
prompt structure, and inference path. As a result, a reduction in benchmark accuracy can 
arise from at least three non-equivalent causes: 

1. Irreversible knowledge destruction (true catastrophic forgetting) 
2. Inference accessibility degradation (knowledge exists but is less readily retrieved) 
3. Task interference or representational reweighting (Knowledge remains intact but is 

deprioritized) 

Only the first case constitutes catastrophic forgetting in a strict sense. 

1.1 Knowledge Existence vs. Knowledge Accessibility 
Modern Language models store information in distributed representations rather than 
explicit, isolated memory slots. Consequently, the presence of knowledge cannot be 
inferred solely from its immediate accessibility during inference. A model may fail to 
retrieve correct information under a specific benchmark prompt while still retaining the 
underlying representations necessary to produce correct outputs under alternative 
conditions. 

This distinction mirrors a familiar analogy: failure to recall a fact on demand does not imply 
that the fact has been erased, only that the retrieval pathway is impaired or deprioritized.  

Benchmark evaluations implicitly assume: 

• A single, stable inference pathway 
• Uniform task interpretation 
• Consistent semantic boundaries across training stages 



In continual learning scenarios, these assumptions no longer hold.  

1.2 Benchmark Sensitivity to Routing and Task Interpretation 
Benchmarks are especially sensitive to changes in how a model interprets a task rather 
than what it “knows.” When new domains are introduced—particularly mathematically 
dense domains—the model may adjust its internal routing and feature prioritization. This 
can alter how problems are classified internally before any reasoning occurs. This effect 
persists even under fixed prompts and evaluation settings, indicating a change in internal 
task routing rather than surface-level prompt sensitivity. 

For example: 

• After math-focused training, formula-heavy inputs may be preferentially routed 
through mathematical reasoning pathways. 

• Tasks that previously relied on mixed reasoning (e.g. scientific or logical inference) 
may be partially misclassified as purely mathematical. 

• This misclassification can result in reduced benchmark accuracy (e.g. GSM8K strict 
vs. GSM8K-CoT) by preferentially activating an inference strategy. This is 
mismatched by the evaluation protocol. 

From a benchmark perspective, this appears indistinguishable from forgetting. From a 
representational perspective, it is not. 

1.3 Variance, Noise, and Misinterpretation of Small Deltas 
Benchmark scores exhibit non-trivial variance due to: 

• Sampling noise 
• Prompt sensitivity 
• Generation stochasticity 
• Evaluation protocol constraints 

Small-to-moderate deltas (e.g. ~3-6%) are frequently within the range where multiple 
explanations are plausible. Treating such deltas as definitive proof of catastrophic 
forgetting is methodologically unsound without additional validation. 

If: 

• Performance degradation is domain-localized 
• Other capabilities remain stable or improve 
• Lost performance can be partially or fully recovered without reintroducing data  

Then the evidence favors inference accessibility shifts rather than knowledge destruction.  



1.4 Implications for Continual Learning Evaluation 
Equating benchmark degradation with forgetting leads to two systematic errors:  

1. False positives: Systems are labeled as destructive when they are not. 
2. Overcorrection: Excessive constraints are introduced to prevent perceived 

forgetting, often at the expense of adaptability. 

A rigorous evaluation of continual learning systems must therefore distinguish between: 

• Irreversible loss (cannot be recovered without retraining) 
• Reversible degradation (can be recovered through reorganization, prompting, or 

controlled updates) 

Only the former represents catastrophic forgetting. 

2. Benchmark Degradation as an Inference Routing 
Problem, Not Knowledge Loss 
Performance Regressions observed after domain-specific training are commonly 
interpreted as evidence of catastrophic forgetting. However, benchmark behavior alone is 
insufficient to support this conclusion. In many cases, observed degradation reflects a 
change in how a model interprets and routes a task internally, rather than a loss of the 
underlying knowledge required to solve it. 

Benchmarks are sensitive not to correctness, but to the alignment between a model’s 
inference strategy and the benchmark evaluation protocol. When a model is trained to 
prioritize a specific domain—such as mathematics—it may alter its internal task 
classification of heuristics. This affects which reasoning pathways are activated before any 
substantive inference occurs. 

As a result, tasks that were previously engaged in mixed or contextual reasoning may be 
preferentially routed through a narrower, domain-specialized pathway. The model remains 
capable of producing correct answers, but the activated inference strategy may be 
mismatched to the benchmark scoring criteria. 

This effect is particularly visible in paired benchmarks that test the same underlying 
capability under different evaluation assumptions.  



Figure 1: Illustration of inference misrouting. Following 
domain-specific training, inputs that would previously engage 
mixed or conceptual reasoning pathways may be 
preferentially routed through a dominant domain pathway, 
leading to evaluation-dependent performance differences 
without loss of underlying capability. 

 For example, differences in performance between GSM8K 
(strict answer matching) and GSM8K-CoT (chain-of-thought 
evaluation) can arise even when the model’s mathematical 
competence is intact. A model may generate correct 
intermediate reasoning but fail strict evaluation due to formatting, verbosity, or inference 
path selection—none of which imply erased knowledge. 

Crucially, this degradation can occur without any destruction or overwriting of prior 
representations. Knowledge remains present but is accessed differently. In such cases, 
traditional benchmark drops conflate access inefficiency with knowledge loss. 

This distinction has practical consequences. If degradation is caused by inference routing 
shifts rather than representational damage, then remediation does not require retraining 
from scratch. Instead, the problem becomes one of restoring or refining task classification 
and routing behavior—an architectural and procedural challenge rather than a data or 
scale problem. 

Treating all post-training benchmark regressions as catastrophic forgetting obscures this 
distinction and leads to unnecessarily expensive and risky mitigation strategies. A more 
precise interpretation recognizes that not all performance loss reflects destroyed 
intelligence; in many cases, it reflects misaligned inference. 

3. Limitations of Existing Mitigation Strategies 

In response to catastrophic forgetting, the prevailing mitigation strategies in current 
practice focus on restricting or isolating weight updates. Common approaches include 
freezing large portions of the base model, attaching adapters (e.g., LoRA), partial fine-
tuning, or maintaining multiple task-specific variants. While these methods can reduce 
immediate performance degradation, they do not address the underlying cause of 
inference misalignment described in the previous sections. 

These strategies operate under the assumption that forgetting is primarily caused by 
destructive weight updates. As a result, they emphasize preventing change rather than 



managing how change is integrated. This framing treats model knowledge as fragile and 
static, rather than as something that can be preserved while still allowing controlled 
adaptation. 

Semantic Boundary Collapse 

Beyond surface-level performance degradation, continual updates can introduce a deeper 
structural failure: the erosion of semantic boundaries between domains. Even when task-
specific knowledge remains encoded within the model, repeated updates can reduce the 
separability of representations associated with distinct domains (e.g., mathematics, 
science, logic). 

This phenomenon—referred to here as semantic boundary collapse—does not 
immediately manifest as outright forgetting. Instead, it degrades the model’s internal 
organization, causing previously distinct conceptual regions to blur or overlap. As a result, 
the model retains knowledge but loses the ability to reliably distinguish which knowledge 
should be applied in each context. 

Because this degradation occurs at the representational 
level, it is often invisible to standard benchmarks that 
evaluate domains in isolation. The collapse becomes 
apparent only under mixed-domain or real-world conditions, 
where inference depends on maintaining clear semantic 
boundaries rather than recalling isolated facts.  

Figure 2: illustrates this effect as a loss of separability 
between domain representations following successive 
updates. 

In practice, freezing weights or isolating updates often introduces a different failure mode: 
fragmentation of inference behavior. The model may retain prior capabilities in isolation but 
lacks a coherent mechanism for integrating new and existing knowledge during inference. 
This can lead to inconsistent task classification, brittle generalization, and degraded 
performance on tasks that require cross-domain reasoning. 

Adapter-based approaches further complicate evaluation. While they can preserve 
baseline benchmark scores under controlled conditions, they frequently mask routing 
conflicts rather than resolving them. The base model and the adapter may encode 
compatible knowledge yet compete or interfere at inference time due to unclear task 



boundaries. This results in performance that appears stable on narrow benchmarks but 
degrades unpredictably in mixed or real-world scenarios. 

Moreover, these approaches tend to lock models into a static training paradigm. Each 
update increases architectural and operational complexity, requiring careful orchestration 
of which components are active, when, and under what conditions. Over time, this turns 
model maintenance into an exercise in risk management rather than capability growth. 

Critically, none of these strategies provide a principled way to verify that existing knowledge 
remains accessible after new training is introduced. At best, they preserve surface-level 
benchmark performance; at worst, they defer degradation until deployment, where failures 
are harder to diagnose and more costly to correct. 

As a result, current mitigation techniques reduce the visibility of catastrophic forgetting 
without eliminating its root causes. They treat inference behavior as an emergent side 
effect rather than as a first-class system of property that can be evaluated, constrained, 
and corrected. 

This gap motivates the need for approaches that explicitly separate knowledge of 
preservation from inference control—allowing models to adapt while maintaining verified 
access to prior capabilities. 

4. Implications for Continual Learning and Model 
Update Strategies 

Recognizing that many post-training performance regressions arise from inference routing 
shifts rather than knowledge destruction has significant implications for how continual 
learning systems should be designed, evaluated, and deployed. It reframes the stability–
plasticity dilemma from a purely representational problem into a systems-level 
coordination problem. 

If knowledge can remain intact while access patterns change, then the primary risk in 
updating large language models is not loss of intelligence, but loss of reliable access to 
that intelligence. This distinction matters operationally. Knowledge of loss requires costly 
remediation—typically full or partial retraining—whereas access degradation can, in 
principle, be detected, constrained, and corrected without reintroducing or relearning the 
underlying information. 



This perspective also exposes a mismatch between current evaluation practices and real-
world model behavior. Benchmarks are typically treated as proxies for capability retention, 
yet they conflate representational integrity with inference alignment. As a result, systems 
may be prematurely classified as degraded when the issue lies in how tasks are interpreted 
rather than in what the model knows. 

For continual learning, this implies that successful update strategies must do more than 
minimize weight drift or preserve benchmark scores. They must provide explicit guarantees 
that previously validated capabilities remain reachable under evolving inference 
conditions. Without such guarantees, models become increasingly brittle as they 
accumulate domain-specific training, even if no single update appears harmful in isolation.  

From a cost perspective, this distinction is critical. Treating every regression as 
catastrophic forgetting forces organizations into expensive retraining cycles or conservative 
update schedules that slow deployment. By contrast, systems that can distinguish 
between representational damage and routing misalignment allow for targeted 
intervention, reducing both computational cost and operational risk. 

Finally, this framing suggests that architectural and procedural decisions made early in a 
model’s lifecycle constrain its long-term updatability. Models trained without regard for 
future task integration implicitly encode assumptions about how inference should be 
routed. As new domains are introduced, these assumptions are stressed, leading to the 
kinds of degradations observed in practice. 

Taken together, these implications argue for a shift away from monolithic retraining and ad 
hoc mitigation toward update strategies that treat inference behavior as a controllable, 
verifiable component of the system. Continual learning, under this view, is not solely about 
preserving weights, but about preserving access to meaning as models evolve. 

5. Criteria for Safe and Verifiable Model Updates 

The observations presented in prior sections suggest that performance degradation 
following post-training updates cannot be reliably interpreted as irreversible knowledge 
loss. Instead, degradation frequently reflects impaired accessibility of existing capabilities 
due to inference misalignment or representational interference. As a result, mitigation 
strategies that focus solely on preventing parameter change are insufficient to guarantee 
safe model evolution. 



To support continual updates without sacrificing existing capabilities, model update 
mechanisms must satisfy a different set of criteria—ones that treat inference behavior and 
knowledge accessibility as first-class system properties rather than emergent side effects. 

First, capability accessibility must be verifiable independently of training history. A 
model should be demonstrably able to access prior competencies after an update without 
requiring reintroduction of task-specific data. Preservation claims based solely on the 
absence of training signals or frozen parameters are inadequate if inference pathways 
cannot be validated under consistent evaluation conditions. 

Second, performance regressions must be diagnosable as access failures rather than 
assumed erasure. Selective or domain-localized degradation—particularly when 
reversible under controlled conditions—indicates that representations may persist even 
when benchmark performance declines. Update frameworks must therefore distinguish 
between representational destruction and inference-level misalignment to avoid 
unnecessary retraining or architectural fragmentation. 

Third, update safety must be evaluated under uniform inference assumptions. 
Changes in prompt structure, evaluation of framing, or inference configuration can 
materially alter benchmark outcomes without any modification to model parameters. 
Consequently, claims of forgetting or recovery are only meaningful when assessed under 
consistent evaluation regimes. This requirement applies equally to baseline 
measurements and post-update validation. 

Fourth, integration of new capabilities must preserve cross-domain coherence. 
Strategies that isolate updates—such as task-specific adapters or frozen backbones—can 
preserve narrow performance metrics while degrading the model’s ability to reason across 
domains. Safe updates should maintain the model’s capacity to correctly classify and 
route mixed-domain inputs, rather than optimize isolated benchmark stability. Since 
reasoning capabilities can decouple from memory access (Jin et al., 2025), safe updates 
must verify that the routing logic between domains remains intact, not that specific facts 
can still be recalled. 

Finally, model maintenance should prioritize reversibility and auditability over static 
preservation. Systems that defer degradation or mask inference conflicts increase 
operational risk by allowing failures to surface only in deployment. In contrast, update 
approaches that enable verification of capability accessibility after each change reduce 
both technical and economic risk, allowing models to evolve without sacrificing reliability.  



Empirical observations from publicly available base models, summarized in Appendix A, 
illustrate that benchmark degradation and recovery can occur under consistent evaluation 
conditions without reintroduction of task-specific supervision. These results reinforce the 
need for update criteria grounded in verification of access rather than assumptions of 
representational loss. 

6. Economic and Operational Implications of Update 
Safety 

The distinction between irreversible knowledge loss and reversible performance 
degradation has material implications for how organizations evaluate the cost and risk of 
deploying and maintaining large language models. When these failure modes are 
conflated, update decisions are driven by worst-case assumptions rather than measured 
system behavior. 

In current practice, even modest performance regressions are often treated as evidence 
that a model has been fundamentally compromised. This interpretation incentivizes full or 
partial retraining as the default remediation strategy, regardless of whether underlying 
knowledge has been lost. As models increase in size and specialization, this approach 
becomes economically unsustainable. 

Separating update safety from benchmark stability allows costs to be evaluated more 
precisely. If degradation reflects access to misalignment rather than representational 
damage, remediation does not require relearning prior knowledge. This reframing reduces 
the frequency with which retraining is treated as unavoidable, lowering both direct 
compute expenditure and indirect operational overhead. 

Risk management is similarly affected. Conventional update pipelines offer limited 
visibility into how prior capabilities are impacted until after deployment, particularly in 
mixed or downstream tasks. This creates latent risk that only becomes apparent in 
production environments. An update process that distinguishes between irreversible and 
reversible failure modes enables earlier detection and containment of regressions, 
reducing the likelihood of costly post-deployment failures. 

These considerations are especially relevant in regulated or high-stakes domains, where 
the inability to demonstrate continuity of prior behavior constrains update cadence. 
Systems that can provide credible assurance that previously validated capabilities remain 



accessible after updates support more frequent iteration without proportionally increasing 
compliance or safety risk. 

At a strategic level, this perspective alters how AI assets are valued. Models are no longer 
treated as static artifacts whose utility decays with time, but as evolving systems whose 
value can compound if updates do not erase prior investment. The primary constraint on 
long-lived deployment shifts from model capacity or data availability to update safety and 
verification. 

Importantly, these implications do not depend on a specific implementation approach. 
They arise from how to update outcomes that are interpreted and managed. Organizations 
that continue to equate benchmark degradation with intelligence loss will overpay for 
retraining and underutilizing existing systems. Those that distinguish between loss and 
misalignment gain flexibility, cost control, and longer model lifecycles. 

Conclusion: Reframing Update Safety in Continual 
Learning 

This paper argues that catastrophic forgetting in large language models is frequently 
mischaracterized as a singular phenomenon of knowledge erasure. Empirical behavior 
across benchmarks instead suggests that many observed regressions arise from changes 
in inference routing and task interpretation, rather than irreversible loss of learned 
representations. 

By distinguishing between knowledge existence and knowledge accessibility, we show that 
benchmark degradation alone is an insufficient proxy for intelligence loss. This distinction 
has practical consequences: systems that conflate access degradation with 
representational damage are often over constrained, leading to unnecessary retraining, 
inflated costs, and reduced adaptability. 

The analysis further demonstrates that existing mitigation strategies, while effective at 
limiting parameter drift, do not address inference behavior as a first-class system property. 
As a result, they may preserve surface-level performance while failing to guarantee 
continued access to prior capabilities under evolving conditions. 

Taken together, these observations motivate a shift in how continual learning systems are 
evaluated and updated. Rather than treating model updates as inherently destructive, 
update safety should be framed as a verifiable property—one that distinguishes irreversible 
loss from reversible misalignment. 



Importantly, this work intentionally focuses on problem framing and system-level 
implications rather than implementation details. The mechanisms by which safe updates 
are enforced are beyond the scope of this paper and are not inferable from the properties 
discussed herein. Future work will focus on formalizing evaluation criteria and verification 
strategies for long-lived, updatable AI systems. 
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Appendix A — Empirical Benchmark Evidence 

Appendix A provides empirical benchmark results demonstrating that the behaviors 
discussed in Sections 2–5 are observable in practice across multiple base models. These 
results are intended to validate that the described phenomena are not theoretical artifacts 
or single-model anomalies, but reproducible effects under consistent evaluation 
conditions. 

Evaluation Consistency. 
 All benchmarks in this appendix were executed using the same evaluation harness, task 
definitions, and zero-shot configuration. Differences in reported scores reflect changes in 
model state rather than differences in benchmarking methodology. 

 

Model Phase 
ARC 
(Δ) 

GSM8K CoT 
(Δ) 

HellaSwag 
(Δ) 

Winogrande 
(Δ) 

Nous-
Hermes-7B 

Math-
trained 

↓ ↑ ~ ↑ 

Nous-
Hermes-7B 

Post-
recovery 

≈ ↑ ≈ ↑ 

Llama-2-7B-
chat 

Math-
trained 

↓ ↑ ~ ↑ 

Llama-2-7B-
chat 

Post-
recovery 

≈ ↑ ≈ ↑ 

Table A1. Summary of benchmark performance changes across training phases for two 
independently evaluated base models.  

Interpretation Notes. 
 Changes in benchmark performance should be interpreted in the context of task sensitivity 
to inference routing rather than as evidence of representational loss. Benchmarks such as 
the ARC Challenge are particularly sensitive to shifts in task classification and internal 
routing behavior, while logic-focused tasks such as Winogrande remain stable or improve 
across all evaluated conditions. 

No model in this appendix exhibits uniform degradation across evaluated tasks. In all 
cases, performance changes are domain-localized and reversible under subsequent 



controlled adaptation, consistent with inference misalignment rather than irreversible 
knowledge destruction as described in Sections 2–4. 
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